
������������������

���������������
����������
�����	������������������������������������

�� �
 �� �� �� �� �� �	 �� ��

Enduring Security Framework

September 2022

Securing the Software Supply Chain: Recommended Practices for Suppliers ii

���š�‡�…�—�–�‹�˜�‡ ���—�•�•�ƒ�”�›
Cyberattacks are conducted via cyberspace and targets an enterprise’s use of cyberspace for the
purpose of disrupting, disabling, destroying, or maliciously controlling a computing environment or
infrastructure; or destroying the integrity of the data or stealing controlled information.1

Recent cyberattacks such as those executed against SolarWinds and its customers, and exploits that
take advantage of vulnerabilities such as the Log4j, highlight weaknesses within software supply
chains, an issue which spans both commercial and open source software and impacts both private
and Government enterprises. Accordingly, there is an increased need for software supply chain
security awareness and cognizance regarding the potential for software supply chains to be
weaponized by nation state adversaries using similar tactics, techniques, and procedures (TTPs).

In response, the White House released an Executive Order on Improving the Nation’s Cybersecurity
(EO 14028). EO 14028 establishes new requirements to secure the federal government’s software
supply chain. These requirements involve systematic reviews, process improvements, and security
standards for both software suppliers and developers, in addition to customers who acquire
software for the Federal Government.

Similarly, the Enduring Security Framework2 (ESF) Software Supply Chain Working Panel has
established this guidance to serve as a compendium of suggested practices for developers,
suppliers, and customer stakeholders to help ensure a more secure software supply chain. This
guidance is organized into a three part series: Part 1 of the series focuses on software developers;
Part 2 focuses on software suppliers; and Part 3 focuses on software customers.

Customers (acquiring organizations) may use this guidance as a basis of describing, assessing, and
measuring security practices relative to the software lifecycle. Additionally, suggested practices
listed herein may be applied across the acquisition, deployment, and operational phases of a
software supply chain.

The software supplier (vendor) is responsible for liaising between the customer and software
developer. Accordingly, vendor responsibilities include ensuring the integrity and security of
software via contractual agreements, software releases and updates, notifications, and mitigations
of vulnerabilities. This guidance contains recommended best practices and standards to aid
suppliers in these tasks.

This document will provide guidance in line with industry best practices and principles which
software developers are strongly encouraged to reference. These principles include security
requirements planning, designing software architecture from a security perspective, adding
security features and maintaining the security of software and the underlying infrastructure (e.g.,
environments, source code review, testing).

1 Committee on National Security Systems (CNSS)

2 The ESF is a cross-sector working group that operates under the auspices of Critical Infrastructure Partnership
Advisory Council (CIPAC) to address threats and risks to the security and stability of U.S. national security systems.
It is comprised of experts from the U.S. government as well as representatives from the Information Technology,
Communications, and the Defense Industrial Base sectors. The ESF is charged with bringing together
representatives from private and public sectors to work on intelligence-driven, shared cybersecurity challenges.

Securing the Software Supply Chain: Recommended Practices for Suppliers iii

��������������������

�������������������� ���	 ����������������������

This document was written for general informational purposes only. It is intended to apply to a
variety of factual circumstances and industry stakeholder, and the information provided herein is
advisory in nature. The guidance in this document is provided “as is.” Once published, the
information within may not constitute the most up-to-date guidance or technical information.
Accordingly, the document does not, and is not intended to, constitute compliance or legal advice.
Readers should confer with their respective advisors and subject matter experts to obtain advice
based on their individual circumstances. In no event shall the United States Government be liable
for any damages arising in any way out of the use of or reliance on this guidance.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or
favoring by the United States Government, and this guidance shall not be used for advertising or
product endorsement purposes. All trademarks are the property of their respective owners.

��������������

NSA, ODNI, and CISA developed this document in furtherance of their respective cybersecurity
missions, including their responsibilities to develop and issue cybersecurity recommendations and
mitigations. This information may be shared broadly to reach all appropriate stakeholders.

��������������

���Ž�‹�‡�•�– ���‡�“�—�‹�”�‡�•�‡�•�–�• �� ���•�“�—�‹�”�‹�‡�•: Enduring Security Framework nsaesf@cyber.nsa.gov,

���‡�†�‹�ƒ ���•�“�—�‹�”�‹�‡�• �� ���”�‡�•�• ���‡�•�•

�x NSA Media Relations, 443-634-0721, MediaRelations@nsa.gov
�x CISA Media Relations, 703-235-2010, CISAMedia@cisa.dhs.gov
�x ODNI Media Relations, dni-media@dni.gov

Securing the Software Supply Chain: Recommended Practices for Suppliers 1

�s ���•�–�”�‘�†�—�…�–�‹�‘�•
Unmitigated vulnerabilities in the software supply chain pose a significant risk to organizations.
This series presents actionable recommendations for a software supply chain’s development,
production and distribution, and management processes to increase the resiliency of these
processes against compromise.

All organizations have a responsibility to establish software supply chain security practices to
mitigate risks, but the organization’s role in the software supply chain lifecycle determines the
shape and scope of this responsibility.

Because the considerations for securing the software supply chain vary based on the role an
organization plays in the software supply chain, this series presents recommendations geared
toward these important roles, namely, developers, suppliers, and customers (or the organization
acquiring a software product).

This guidance is organized into a three part series and will be released coinciding with the software
supply chain lifecycle. This is Part 2 of the series which focuses on the software supplier. Part 1 of
the series focused on software developers and Part 3 of the series will focus on the software
customer. This series will help foster communication between these three different roles and
among cybersecurity professionals that may facilitate increased resiliency and security in the
software supply chain process.

In this series, terms such as risk, threat, exploit, and vulnerability are based on descriptions defined
in the Committee on National Security Systems Glossary (CNSSI 4009).3

1.1 ���ƒ�…�•�‰�”�‘�—�•�†

Historically, software supply chain compromises largely targeted commonly known vulnerabilities
organizations that were left unpatched. While threat actors still use this tactic to compromise
unpatched systems, a new, less conspicuous method of compromise also threatens software supply
chains and undermines trust in the patching systems themselves that are critical to guarding
against legacy attacks. Rather than waiting for public vulnerability disclosures, threat actors
proactively inject malicious code into products that are then legitimately distributed downstream
through the global software supply chain. Over the last few years, these next-gen software supply
chain compromises have significantly increased for both open source and commercial software
products.

Technology consumers generally manage software downloads and broader, more traditional
software supply chain activities separately. Considering both the upstream and downstream phases
of software as a component of supply chain risk management may help to identify problems and
provide a better way forward in terms of integrating activities to achieve systemic security.
However, there are also some differences to account for in the case of software products. A
traditional software supply chain cycle is from point of origin to point of consumption and generally
enables a customer to return a malfunctioning product and confine any impact. In contrast, if a

3 CNSSI-4009.pdf

Securing the Software Supply Chain: Recommended Practices for Suppliers 2

software package is injected with malicious code which proliferates to multiple consumers; the
scale may be more difficult to confine and may cause an exponentially greater impact.

Common methods of compromise used against software supply chains include exploitation of
software design flaws, incorporation of vulnerable third-party components into a software product,
infiltration of the supplier’s network with malicio us code prior to the final software product being
delivered, and injection of malicious software that is then deployed by the customer.

Stakeholders must seek to mitigate security concerns specific to their area of responsibility.
However, other concerns may require a mitigation approach that dictates a dependency on another
stakeholder or a shared responsibility by multiple stakeholders. Dependencies that are
inadequately communicated or addressed may lead to vulnerabilities and the potential for
compromise.

Areas where these types of vulnerabilities may exist include:

�x Undocumented features or high risk functionality,

�x Unknown and/or revisions to contractual, functionality or security assumptions between
evaluation and deployment,

�x Supplier’s change of ownership and/or of geo-location, and
�x Poor supplier enterprise or development hygiene.

�s�ä�t ���‘�…�—�•�‡�•�– o�˜�‡�”�˜�‹�‡�™

This document contains the following additional sections and appendices:

���‡�…�–�‹�‘�• �t provides best practices and standards recommended for suppliers to help ensure the
integrity and security of software from production through delivery.

���‡�…�–�‹�‘�• �u is a collection of appendices supplementing the preceding sections:

���’�’�‡�•�†�‹�š �� : Crosswalk Between the NIST SP800-218; Mitigating the Risk of Software
Vulnerabilities by Adopting a Secure Software Development Framework (SSDF) 4 and Use Cases
described herein.

���’�’�‡�•�†�‹�š �� : Dependencies

���’�’�‡�•�†�‹�š ��: Supply-Chain Levels for Software Artifacts (SLSA)5

���’�’�‡�•�†�‹�š �� : Recommended Artifacts and Checklist

���’�’�‡�•�†�‹�š ��: Informative References

���’�’�‡�•�†�‹�š �	: Acronyms.

4 NIST SP 800-218, Secure Software Development Framework (SSDF) Version 1.1: Recommendations for Mitigating
the Risk of Software Vulnerabilities
5 GitHub - slsa-framework/slsa: Supply-chain Levels for Software Artifacts

Securing the Software Supply Chain: Recommended Practices for Suppliers 3

Each section contains examples of threat scenarios and recommended mitigations. Threat scenarios
explain how processes that compose a given phase of the software development lifecycle (SDLC)
relate to common vulnerabilities that could be exploited. The recommended mitigations present
controls and mitigations that could reduce the impact of the threats.

Securing the Software Supply Chain: Recommended Practices for Suppliers 6

�x Ensure the code repository, build, and test environments have at least the same security
protections as other critical network capabilities such as network segmentation, firewalling,
monitoring, automated encryption, and remote backups,

�x Ensure only corporate-issued or approved development systems can access the
development, build, and test environments using multi-factor authentication (MFA) or
continuous authentication based on behavior analytics7 and only through office networks
with physical security or through secure virtual private networks (VPNs). Ensure that failed
access attempts are detected, reported, and investigated. This is particularly important for
mobile or remotely working employees,

�x Conduct reviews of third-party software (e.g., using binary software composition analysis)
and assure the security of those included modules,

�x Deliver digitally signed code and associated supporting files using a code-signing system
that protects sensitive signing keys and that uses hardware protection such as a Federal
Information Processing Standards (FIPS) 140-2/-3 Hardware Security Module (HSM). This
requires at least two individuals to activate the signing keys and approve the software
release package (i.e., code, supporting files, and metadata),

�x Establish a strong security culture in the development and operations support teams,

�x Review personnel, tasks, systems, and policies to ensure they continue to be appropriate,
necessary, and complete. Conduct reviews both on a schedule and as triggered by events.

Threat scenarios: SaaS

The following are examples of cloud-native software development scenarios that could be exploited
such as:

�x Software development process that promises faster time to market, better scalability and
management, and lower costs, all while maintaining the same levels of development
security and integrity,

�x Adoption of a new approach which requires changes to on-premises development and
distribution processes as well as security and security management regimes,

�x Key changes that include adoption of containerization and micro services architectures.

Recommended mitigations

The following mitigations can help reduce threats and risks associated with the development
process:

�x Use of strong authentication, authorization, code scans, vulnerability analyses, and digital
signing of applications,

�x These practices should be broadened, as needed, to address any additional authentication
challenges associated with endpoint and operational cloud security.

7 Zero Trust Architecture (nist.gov)

Securing the Software Supply Chain: Recommended Practices for Suppliers 9

4. The media used to store archives is determined by the organization, and the decision
usually hinges on its convenience, reliability, and availability. Organizations have
traditionally used network storage and other media such as tape devices:

a) Tape media is standard for some organizations that need a low-cost way to store
large amounts of data in a small space. However, retrieval and restore for this media
can become a problem,

b) Attached network drives are also common, but this media is much more expensive.
Network storage requires the real estate to host it and expensive hardware to
secure and maintain it. However, unlike most tape systems, network drives offer
archive data that is readily available should the organization or investigators need
to access it,

c) Cloud storage has the advantages of availability and low costs, but the speed is
dependent on the organization’s bandwidth and network speed. Many organizations
have moved to cloud storage for its convenience and savings. However, it is still the
responsibility of the organization to keep the data secure,

d) Based on the organization, other storage types are listed below:

�x Block storage services, which expose software-defined block devices that
can be presented to virtual hosts running in the cloud,

�x Object storage services, which can be mapped to hosts, applications, or even
other cloud services, and allow addressing discrete, unstructured data
elements by ID or metadata,

�x Scalable shared file systems, which allows a scalable set of hosts to access
the same file system at a high speed,

5. The process of archiving data is often automated using software. The features and
capabilities offered by archiving software depend on the supplier, but most have standard
features across every platform:

a) A system administrator configures the time, location, and frequency for software to
be archived. An archiving policy is created to determine the rules behind moving
data. Using archive policies, an administrator ensures that data moved to the
storage location follows the proper regulatory standards and requirements,

b) In conjunction with other rules about archiving, a retention policy is also necessary.
A retention policy determines the amount of time an archive stays available before
the data can be overwritten or destroyed. A typical retention policy for backups is
about 30 days, but archived data might be retained longer before it is destroyed.
Some organizations keep archived data for years before media is rotated or archives
are deleted. For the most sensitive data, archives may never be overwritten or
destroyed. Archiving and compliance standards may have a retention policy
requirement, so organizations should ensure that their configuration does not
violate any regulatory standards.

Securing the Software Supply Chain: Recommended Practices for Suppliers 13

�x An adversary with access to software processes and tools within the production build
environment may insert malicious software into components,

�x Inadequately configuring the compilation and build process may compromise the
executable’s security,

�x Improperly safeguarding the integrity of the production build process and the binary
artifacts which it generates.

Recommended mitigations

The processes that are used to compile and build software components must be properly
configured to be secure by default in order to insure the integrity of all binary production code
artifacts. The following controls should be implemented to harden software compilation and build
processes:

1. Organizations should establish and maintain a trusted toolchain for all tools involved in the
compilation and building of software; these tools should be configured to a known secure
baseline state, recorded, and tracked via an inventory maintained in a Configuration
Management Database, continuously monitored for emergent security vulnerabilities, and
receive appropriate security updates in accordance with defined remediation timelines.

2. All build processes should be automated and the resulting scripts and metadata should be
stored securely in a version control system with access limited to the individuals
responsible for building the components.

3. Non-interactive service accounts should be used to invoke automated build processes to
ensure build outputs are service-generated and non-falsifiable.

4. The authentication credentials of service accounts which execute automated compilation
and packaging processes should be verified using an approved method to validate the
processes as trusted.

5. Automated build processes should execute in an ephemeral environment which is logically
isolated and free from external influence.

6. Automated build processes should generate and maintain a build manifest identifying
builder, sources, entry point, and parameters to ensure build reproducibility.

7. Secure compiler settings should be enabled to help prevent or limit the effectiveness of
some types of security issues, most notably buffer overflows (both stack and heap-based).
Examples of secure compiler settings may include, but are not limited to, the following:

a) Enable stripping of symbols from binary output,

b) Enable data execution prevention,

c) Enable safe structured exception handling,

d) Runtime checks for security,

e) Enable address space layout randomization,

f) Emit an error if an array index can be determined at compile time to be out of
bounds,

g) Emit a warning upon the detection of a suspicious use of an address pointer.

Securing the Software Supply Chain: Recommended Practices for Suppliers 18

1. Create a vulnerability assessment team consisting of architects, developers, testers,
cryptologists, and human factor engineers whose goal is to identify exploitable weaknesses
in software.

2. For the software capability define a process that uses known environment analysis, monitor
vulnerabilities associated with the software capability, and unknown environment fuzz
testing of individual units within the combined system.

3. For the software components define a process that uses known environment analysis, uses
source or binary composition analysis tools to monitor vulnerabilities associated with the
identified software components, and unknown environment fuzz testing of individual units
within the combined system.

4. Invest in static and dynamic evaluation tools that are state of the art. Keep them current and
implement them according to supplier documentation.

5. Create a central company-wide Product Security Incident Response (PSIRT) team. Public-
facing PSIRT information (e.g., on a web page) should be easily accessible for external
researchers to report vulnerabilities in the organization’s products. The PSIRT team should
work with external researchers to acknowledge and gather information on any reported
vulnerabilities, as well as to ensure that any reported vulnerability is fixed. Organizations
should practice responsible disclosure on all vulnerabilities.

6. All known security issues and/or vulnerabilities should be tracked as product defects in the
organization’s defect tracking tool. Items tracked should include CVSS scores, specific
impacts on the component, and any other relevant supporting data. Vulnerability
information should only be stored in access-controlled pages in a bug tracking system and
based on the potential sensitivity.

7. Provide sufficient human and compute resources, software testing, and time to test based
on the multiple factors and complexity that could constitute a software component or
package. Factors may include load, branches, race conditions, corner cases, etc..

8. Review and either eliminate or document any weaknesses found.

9. Refer to the SBOM (or a similar mechanism) related to third-party software and open-
source components associated with the software. Establish and follow corporate guidance
on the upgrade of embedded components as issues are announced.

10. When a software component is modified, repeat the recommended process herein for that
unit and the system.

Threat scenarios: SaaS

The following are example scenarios that could be exploited:

�x The deployment and implementation of SaaS applications at the expense of security,

�x Organizations which have been provided with the capability to enhance, improve, and
optimize their overall workflow,

�x Speedy and fast adoption and acquisition of SaaS tools and products (especially to satisfy
rapid post-COVID work from home requirements) may have inherent risk(s) and may
ultimately impact the overall security posture of an organization.

Securing the Software Supply Chain: Recommended Practices for Suppliers 19

Recommended mitigations: SaaS

The following are example mitigations to threats:

1. Implement a stringent security policy towards SaaS application security.

2. Design a mechanism to monitor and scan third-party applications which are directly
connected to the cloud environment.

3. Develop a comprehensive and reliable backup solution.

4. Implement identity and access control mechanisms.

5. Develop mature security assessments (this may possibly include utilizing Cloud Access
Security Brokerage capabilities) so that any security gaps between the cloud service
customer and cloud service provider may be bridged.

6. Implement industry standard encryption algorithms.

Securing the Software Supply Chain: Recommended Practices for Suppliers 20

�u ���’�’�‡�•�†�‹�…�‡�•

�u�ä�s ���’�’�‡�•�†�‹�š ���ã ���”�‘�•�•�™�ƒ�Žk ���‡�–�™�‡�‡�• ���…�‡�•�ƒ�”�‹�‘�• �ƒ�•�† �������	

The section reference numbers in the below crosswalk may look similar for each role (Developer,
Supplier and Customer) however they are from the respective parts of the Series. (PO – Prepare
Organization; PW - Produce Well-Secured Software; PS – Protect Software; and RV – Respond to
Vulnerabilities)

�������	 �S ���‡�˜�‡�Ž�‘�’�‡�” ���—�’�’�Ž�‹�‡�” ���—�•�–�‘�•�‡�”

�����ä�s 2.2.3 Secure Development
Practices

2.1.1 Define criteria for
software security checks

�����ä�s 2.2.1.1 Source Control
Check-in Process

2.2.1.4 Code Reviews

2.2.6 External
Development Extensions

2.3.2 Selections and
Integration

24.1 Build Chain Exploits

2.5.3 Secure the
Distribution System

2.2.1 Protect all forms of
code from unauthorized
access

2.2.2 Provide a mechanism
for verifying software
release integrity (PS.1,
PW.9)

�����ä�u 2.2.1.1 Source Control
Check-in Process

2.2.1.2 Automatic and
Manual Dynamic and Static
Security / Vulnerability
Scanning

2.3.2 Selections and
Integration

2.3.3 Obtain Components
from a Known and Trusted
Supplier

2.4.1 Build Chain Exploits

2.2.3 Archive and protect
each software release

�����ä�s 2.3.2 Selections and
Integration

2.3.1 Design software to
meet security requirements

�����ä�u 2.2.3 Secure Development
Practices

2.3.2 Selections and
Integration

2.3.2 Verify third-party
software complies with
security requirements

2.1 Procurement/Acquisition
(1) Requirements Definition /
Recommended Controls
(viii)(viii)

Securing the Software Supply Chain: Recommended Practices for Suppliers 21

2.3.3 Obtain Components
from a Known and Trusted
Supplier

2.3.4 Component
Maintenance

2.3.5 Software Bill of
Material (SBOM)

2.2 Deployment (6)

(2) Testing – Functionality (c)
Recommended Controls (ii)
Verify contents in SBOM

2.2 Deployment (6)

Deploy (3) Contracting /
Recommended Controls (v)
(viii) (ix)(x)

�����ä�x 2.2.3.2 Use of Unsecure
Development Build
Configurations

2.4.1 Build Chain Exploits

2.3.3 Configure the
compilation and build
processes

�����ä�y 2.2.1.4 Code Reviews

2.2 Open source
Management Practices

2.2.6 External
Development Extensions

23.2 Selections and
Integration

2.3.3 Obtain Components
from a Known and Trusted
Supplier

2.3.4 Review and/or analyze
human-readable code

�����ä�z 2.2.1.3 Nightly Builds with
Regression Test
Automation

2.3.2 Selections and
Integration

2.4.1 Build Chain Exploits

2.3.5 Test executable code

�����ä�{ 2.2.3.2 Use of Unsecure
Development Build
Configurations

2.4.1 Build Chain Exploits

2.2.2 Provide a mechanism
for verifying software
release integrity (PS.1,
PW.9)

2.3.6 Configure the software
to have secure settings by
default

�����ä�s 2.3.4 Component
Maintenance

2.4.1 Build Chain Exploits

2.4.1 Identify, analyze, and
remediate vulnerabilities on
a continuous basis

Securing the Software Supply Chain: Recommended Practices for Suppliers 23

�u�ä�u ���’�’�‡�•�†�‹�š ���ã ���—�’�’�Ž�›�æ���Š�ƒ�‹�• ���‡�˜�‡�Ž�• �ˆ�‘r ���‘�ˆ�–�™�ƒre ���”�–�‹�ˆ�ƒ�…�–�• ������������

���—�’�’�Ž�›�æ���Š�ƒ�‹�• ���‡�˜�‡�Ž�• �ˆ�‘r ���‘�ˆ�–�™�ƒ�”�‡ ���”�–�‹�ˆ�ƒ�…�–�• (SLSA) is a security framework from source to service,
giving anyone working with software a common language for increasing levels of software security.
The framework is currently in Alpha stage and constantly being improved by supplier-neutral
community. Google has been using an internal version of SLSA since 2013 and requires it for all their
production workloads. http://slsa.dev

���‡�“�—�‹�”�‡�•�‡�•�– ���‡�•�…�”�‹�’�–�‹�‘�• ���s ���t ���u ���v

���…�”�‹�’�–�‡d �„�—�‹�Ž�† All build steps were fully defined in some sort of “build
script.” The only manual command, if any, was to invoke
the build script.
Examples:

�x Build script is Makefile, invoked via make all.
�x Build script is. github / workflows / build.yaml,

invoked by GitHub Actions.

�6 �6 �6 �6

���—�‹�Žd �•�‡�”�˜�‹�…�‡ All build steps ran using a build service, not on a
developer’s workstation.
Examples: GitHub Actions, Google Cloud Build, Travis CI.

�6 �6 �6

���’�Š�‡�•�‡�”�ƒ�Ž
�‡�•�˜�‹�”�‘�•�•�‡�•�–

The build service ensured that the build steps ran in an
ephemeral environment, such as a container or virtual
machine (VM), provisioned solely for this build, and not
reused from a prior build.

�6 �6

���•�‘�Ž�ƒ�–�‡�† The build service ensured that the build steps ran in an
isolated environment free of influence from other build
instances, whether prior or concurrent.

�x It MUST NOT be possible for a build to access any
secrets of the build service, such as the
provenance signing key.

�x It MUST NOT be possible for two builds that
overlap in time to influence one another.

�x It MUST NOT be possible for one build to persist or
influence the build environment of a subsequent
build.

�x Build caches, if used, MUST be purely content-
addressable to prevent tampering.

�6 �6

���ƒ�”�ƒ�•�‡�–�‡�”�Ž�‡�•�• The build output cannot be affected by user parameters
other than the build entry point and the top-level
source location. In other words, the build is fully
defined through the build script and nothing else.
Examples:

�x GitHub Actions workflow dispatch inputs MUST be
empty.

�6

Securing the Software Supply Chain: Recommended Practices for Suppliers 24

�x Google Cloud Build user-defined substitutions
MUST be empty. (Default substitutions, whose
values are defined by the server, are acceptable.)

���‡�”�•�‡�–�‹�… All transitive build steps, sources, and dependencies
were fully declared up front with immutable references,
and the build steps ran with no network access.

The developer-defined build script:
�x MUST declare all dependencies, including sources

and other build steps, using immutable references
in a format that the build service understands.

The build service:

�x MUST fetch all artifacts in a trusted control plane.
�x MUST NOT allow mutable references.

�x MUST verify the integrity of each artifact.
o If the immutable reference includes a

cryptographic hash, the service MUST verify
the hash and reject the fetch if the verification
fails.

o Otherwise, the service MUST fetch the artifact
over a channel that ensures transport
integrity, such as TLS or code signing.

�x MUST prevent network access while running the
build steps.

o This requirement is “best effort.” It SHOULD
deter a reasonable team from having a non-
hermetic build, but it need not stop a
determined adversary. For example, using a
container to prevent network access is
sufficient.

�6

���‡�’�”�‘�†�—�…�‹�„�Ž�‡ Re-running the build steps with identical input artifacts
results in bit-for-bit identical output. Builds that cannot
meet this MUST provide a justification why the build
cannot be made reproducible.
�ò���ó���•�‡�ƒ�•�•���–�Š�ƒ�–���–�Š�‹�•���”�‡�“�—�‹�”�‡�•�‡�•�–���‹�•���ò�„�‡�•�–���‡�ˆfort.” The
developer-provided build script SHOULD declare
whether the build is intended to be reproducible or a
justification why not. The build service MAY blindly
propagate this intent without verifying reproducibi lity.
A customer MAY reject the build if it does not
reproduce.

��

Securing the Software Supply Chain: Recommended Practices for Suppliers 25

�u�ä�v ���’�’�‡�•�†�‹�š ���ã ���”�–�‹�ˆ�ƒ�…�–�• �ƒ�•d ���Š�‡�…�•�Ž�‹�•�–

In principle, any artifacts created during the lifecycle of the software development process are owned
by and private to a developing organization. These organizations can determine what artifacts are
made available with potential and current users of a product with or without a Non-Disclosure
Agreement (NDA). Availability of information must take into consideration regulatory and legal
requirements, the customer requirements for the information and the risk involved by exposing
information leading to the exploitation of the product. Exceptions may include open-source
development organizations, which are more inclined to make all development information available,
to include source code.

When defining the availability of an artifact, the general terms used in this section will be the
following:

1. Publicly disclosed

2. Externally available
a) under a Non-Disclosure Agreement (NDA)

b) government agency mandated requirement

3. Private / company confidential

The availability of an artifact varies between companies and agencies and is only described here as a
reference for what might be possible when using artifacts to validate the software supply chain
process. Some artifacts, such as a high-level architecture document may be intentionally generated
to allow any perspective consumers an introductory artifact detailing the overall strategies used in
the design, development, and operation of a product. These publicly disclosed documents may
describe common industry nomenclature, such as Federal Information Process Standards (FIPS)
compliance, cryptography standards used, development processes adhered to or certifications
processes passed. NDA and government mandated availability require contractual agreements
providing access to artifacts that would not normally be exposed by the organization that produced
the product. While private/company confidential artifacts are generally low-level and detailed work
products that may contain sensitive secrets and knowhow and if exposed, provide potential insight
into product’s competitive implementation and threat vectors that may not be addressed in the
product, therefor posing a threat if exposed outside of the producers environment. Private/company
confidential artifacts are generally maintained by the “Suppliers” and “Developers” of the product to
facilitate the auditing and validation of adherence to the Secure Software Development Lifecycle
(Secure SDLC) and Security practices set forth by the product owner, company, or organization. For
more information on the Secure SDLC process, refer to Section �t�ä�s �ò���‡�…�—�”�‡ ���”�‘�†�—�…�– ���”�‹�–�‡�”�‹�ƒ �ƒ�•d
���ƒ�•�ƒ�‰�‡�•�‡�•�–�á�ó subsection “Recommended Mitigations,” Item 8 of the Part 1 Developer of the series.

Most of the artifacts collected during the development lifecycle are not meant to be shared outside the
developing organization yet may be preserved in persistent storage as evidence to verify the integrity
of the policies and processes used during the development of a product. A developer should securely
retain artifacts of software development for a certain duration according to its secure software
development policies and processes. As a by-product of the process used to implement and mitigate
the attack surface and threat model of the software as well as the software build pipeline during the
development process, the following artifacts may be created, and collected:

Securing the Software Supply Chain: Recommended Practices for Suppliers 26

���”�–�‹�ˆ�ƒ�…�– ���š�ƒ�•�’�Ž�‡�• ���‡�•�…�”�‹�’�–�‹�‘�•�����—�”�’�‘�•�‡

���‹�‰�Š�æ�Ž�‡�˜�‡�Ž ���‡�…�—�”e
���‡�˜�‡�Ž�‘�’�•�‡�•�–
���‹�ˆ�‡�…�›�…�Ž�‡ ���”�‘�…�‡�•�•
�†�‘�…�—�•�‡�•�–

Attestation to secure development practices which can cover:

�x Secure software architecture/design process
�x Attack surface investigation and threat modeling process
�x Secure software development/programming training
�x Software security testing process
�x Source control check-in process
�x Trusted repository for modules and processes
�x Continuous integration and delivery (CI/CD) processes
�x Defect/vulnerability reporting and customer update process
�x Code reviews process for security and continuous software

security improvement
�x Continuous verification of third-party binaries
�x Open-source management practices
�x Hardening the build environment
�x Secure relationship with a third-party supplier
�x Process to secure the signing server
�x Final package validation process

���”�‘�†�—�…�– ���‡�ƒ�†�‹�•�‡�•�•
�…�Š�‡�…�•�Ž�‹�•�–

Attestation to product release and secure shipping criteria and product
readiness for shipment which can cover:

�x No pending known critical bugs and vulnerabilities (e.g. bug track
report)

�x Cryptographically signed components
�x Proper software licensing

���”�‘�†�—�…�–
���—�’�’�‘�”�–�����‡�•�’�‘�•�•�‡
���Ž�ƒ�•

Attestation to vulnerability discloser and response process (e.g. handling
of policy violation and anomalies)

���‘�ˆ�–�™�ƒ�”�‡ ���‹ll �‘� ̂
���ƒ�–�‡�”�‹�ƒ�Ž (����������

�x Attestation to the integrity of the producer
�x Attestation to the security and authenticity of components

included in the product
�x Attestation to the third-party software components
�x Attestation to the integrity of software licenses

���”�…�Š�‹�–�‡�…�–�—�”�‡�����‡�•�‹�‰�•
���‘�…�—�•�‡�•�–�•

�x Attestation to secure architecture/design practices
�x Mitigation of attack surface vulnerabilities
�x Attestation to mapping between secure requirements to software

architecture and components

���‡�˜�‡�Ž�‘�’�‡�” ���”�ƒ�‹�•�‹�•g
���‡�”�–�‹�ˆ�‹�…�ƒ�–�‡�•�����”�ƒ�‹�•�‹�•g
�…�‘�•�’�Ž�‡�–�‹�‘�•
���–�ƒ�–�‹�•�–�‹�…�•���†�ƒ�–�ƒ

�x Attestation to secure development practices
�x Attestation to secure coding practices

���Š�”�‡�ƒ�– ���‘�†�‡�Ž ���‡�•�—�Ž�–�•
���‘�…�—�•�‡�•�–

�x Attestation to secure design practices
�x Attestation to secure third-party component integration practices

Securing the Software Supply Chain: Recommended Practices for Suppliers 27

���‹�‰�Š�æ�Ž�‡�˜�‡l ���‘�ˆ�–�™�ƒ�”�‡
���‡�…�—�”�‹�–y ���‡�•�– ���Ž�ƒ�• �ƒ�•�†
���‡�•�—�Ž�–�•

High-level, system and unit level test plan and results (A set of tests should
be commensurate with the requirements and risk profile of the product or
service.)

�x Coverage details
�x SAST - Static Application Security Testing
�x DAST - Dynamic Application Security Testing
�x SCA - Software Composition Analysis
�x Fuzzing/Dynamic
�x Penetration
�x Red team testing
�x Black box testing
�x QA security feature analysis

���—�–�‘�•�ƒ�–�‹�… �ƒ�•d ���ƒ�•�—�ƒ�Ž
���›�•�ƒ�•�‹�… �ƒ�•d ���–�ƒ�–�‹�…
���‡�…�—�”�‹�–�›�����—�Ž�•�‡�”�ƒ�„�‹�Ž�‹�–�›
�����‡�…�—�”�‹�–y ���…�ƒ�•�•�‹�•g
���‡�•�—�Ž�–�•�� ���‡�’�‘�”�–�•

The reports can cover:

�x Security Scanning Results for Static, Dynamic, Software
Composition Analysis and Fuzzing

�x Security Scanning Results for Penetration or Red-Teaming
�x Attestation to secure development/build/test practices
�x Mitigation against known software weakness classes in the

Common Weakness Enumeration (CWE)
�x Mitigation against publicly known vulnerabilities and Common

Vulnerabilities and Exposures (CVEs)

���’�‡�•�æ���‘�—�”�…�‡ ���‡�˜�‹�‡�™
���”�‘�…�‡�•�• ���‘�…�—�•�‡�•�–
�ƒ�•�† ���Ž�Ž�‘�™�‡�† ���‹�•�–

Attestation to secure open-source review process and management

���—�‹�Žd ���‘�‰ �x Attestation to the integrity of securely built products
�x Attestation to no known critical errors/warnings
�x Attestation to use of tool-chain defenses (stack checking, ASLR,

etc.)

���‡�…�—�”e ���‡�˜�‡�Ž�‘�’�•�‡�•�–
���—�‹�Žd ���‘�•�ˆ�‹�‰�—�”�ƒ�–�‹�‘�•�•
���‹�•�–�‹�•�‰

�x Attestation to secure build environment

���Š�‹�”�†�æ���ƒ�”�–�› ���‘�ˆ�–�™�ƒ�”�‡
���‘�‘�Ž�æ���Š�ƒ�‹�•�• ���‹�•�–

�x Attestation to secure build environment

The artifacts described in the table above may be used for attestation of the integrity of an
organizations’ secure development process that was used to produce a given product. Organization
can then provide a high-level checklist, illustrated below, which may utilize artifacts created during
the development process that attest to the adherence, at some level, of the recommended practice
during the development process. The developer may add a brief description regarding how the
organization supports a check list item in addition to Yes/No/Not Applicable (NA)/Incomplete
(Inc) response, e.g. alternative practices to support it and reasons for non-applicability.

The document references in the following table are focused on the Supplier Section of the Guidance
release.

Securing the Software Supply Chain: Recommended Practices for Suppliers 28

���‡�ƒ�•�—�”�ƒ�„�Ž�‡ ���—�–�…�‘�•�‡��
���‡�•�…�”�‹�’�–�‹�‘�•

���”�ƒ�…�–�‹�…�‡
���„�•�‡�”�˜�‡�†

���‡�•, ���‘�á

���� , ���•�…

�������	
���ƒ�•�•�•

���”�–�‹�ˆ�ƒ�…�– ���š�ƒ�•�’�Ž�‡�• ���‘�…�—�•�‡�•�– ���‡�ˆ�‡�”�‡�•�…�‡�•

���‡�…�—�”�‡ ���”�‘�†�—�…�– ���”�‹�–�‡�”�‹�ƒ �¬ ���ƒ�•�ƒ�‰�‡�•�‡�•�–

Do you define policies that
specify risk-based software
architecture and design
requirements?

 �����ä�s�ä�t Architecture/Design
Documents

Do you require team members
to regularly participate in
secure software architecture,
design, development, and
testing training and monitor
their training completion?

 �����ä�t�ä�t

�����ä�u�ä�v

Training Completion
Data/Statistics

Developer Training
Certificates

Have development team
members attended training
programs specific to their
roles, development tools and
languages to update their
skills?

 �����ä�t�ä�t Training Completion
Data/Statistics

Developer Training
Certificates

At a minimum, for all critical
software components and
external services that your
team operates and own, have
you completed the attack
surface survey and threat
models for all such services?

 �����ä�s�ä1
�����ä�t�ä�s

Threat Model Results
Documents

2.3.5 Test Executable
Code

Do you have up to date threat
models for all critical
components your team ships
that have been reviewed by a
person trained in software
security and do you make this
document available to other
teams that pick up your
component?

 �����ä�s�ä�s,
�����ä�t�ä�s

Threat Model Results
Document

2.3.5 Test Executable
Code

Has your team held a black-
box investigation for security?

 Black box test results

Do you have and use security
tools and methodology (e.g.
recommended by NISTIR
8397) for static, dynamic and
Software Composition Analysis

 �����ä�u�ä�s SAST, DAST, SCA test
results

2.3.5 Test Executable
Code

Securing the Software Supply Chain: Recommended Practices for Suppliers 29

and ensure that all high
severity issues are addressed?

Do you perform input fuzzing
as part of a regular process for
your component or product's
inputs?

 �����ä�z�ä�t Fuzzing/Dynamic
test results

2.3.5 Test Executable
Code

Do you have security testing as
part of your overall QA plan to
enhance the testing of specific
features of your product?

 Product test results 2.3.5 Test Executable
Code

Have your product or
components been identified as
needing penetration testing? If
so, are all issues found
recorded in a bug tracker, with
high priority defects set to
prevent shipment of the
product?

 �����ä�z�ä�t Penetration Test
Results

2.3.5 Test Executable
Code

Have your product or
components been identified as
needing red-team testing? If
so, are all issues found
recorded in a bug tracker, with
high priority defects set to
prevent shipment of the
product?

 Red-Team Test
Results

Have your product or
components been identified as
needing testing for security
gaps by an external party? If
so, has your code or systems
been tested for security gaps
by an external party (e.g. JFAC
Software Assurance providers,
pen testing, threat model
reviews, vulnerability scan
tools and red-teams)?

 Third-party Test
Results

2.3.5 Test Executable
Code

Does your release include an
SBOM and confirmation that
no unacceptable security
vulnerabilities are pending,
binaries are digitally signed
and meet cryptographic
standards?

 SBOM

Product Bug
Tracking Report

Securing the Software Supply Chain: Recommended Practices for Suppliers 30

Are all public cloud resources
continuously monitored by a
tool that analyzes and alerts
for policy violations and
anomalies?

 Product Support /
Response Plan

2.4.1 Identify, analyze,
and remediate
vulnerabilities on a
continuous basis

Are the alerts being actively
monitored?

 Product Support /
Response Plan

Is there a process in place to
resolve policy violations
within a specific amount of
time?

 Product Support /
Response Plan

2.4.1 Identify, Analyze,
and Remediate
Vulnerabilities on a
Continuous Basis

���‡�˜�‡�Ž�‘�’ ���‡�…�—�”e ���‘�†�‡

Are all your security issues
tracked with a bug tracker and
scored, for example using
CVSSv3 scores to help
determine fix prioritization
and release scheduling?

 �����ä�t�ä�s Secure Software
Development
Lifecycle Process
document

Bug Tracker Report

2.2.3 Archive and
Protect Each Software
Release

2.3.5 Test Executable
Code

Do you use access-controlled
applications to store sensitive
vulnerability information for
all issues affecting production
code that is more restrictive
than plain bug tracker defects?

 �����ä�w�ä�s Secure Software
Development
Lifecycle Process
document

2.2 Protect Software

2.4.1 Identify, Analyze,
and Remediate
Vulnerabilities on a
Continuous Basis

Does your team have a process
to reduce a class of
vulnerabilities based on
previously identified
vulnerabilities or attacks?

 �����ä�y�ä�t Secure Software
Development
Lifecycle Process
document

2.3.4 Review and/or
Analyze Human-
Readable Code

Do you perform nightly builds
with automated regression
and security test to quickly
detect problems with recent
builds?

 Secure Software
Development
Lifecycle Process
document

Are code check-ins gated by
code collaborators and source
control to prevent anyone
from accidentally or
intentionally submitting un-
reviewed code changes?

 �����ä�y�ä�t Secure Software
Development
Lifecycle Process
document

Does the team require code
reviews for all code and build
scripts / configuration
changes?

 �����ä�y Secure Software
Development
Lifecycle Process
document

Securing the Software Supply Chain: Recommended Practices for Suppliers 31

Does the team measure and
analyze the quality of the code
review process?

 Secure Software
Development
Lifecycle Process
document

Do you ensure only required
modules are included in the
product and “unused” modules
and code out of scope of the
requirements and design
document are uninstalled or
removed, mitigating “living-
off-the-land” attacks and
decreasing the attack surface?

 Secure Software
Development
Lifecycle Process
document

Requirements
Document

Do you map all your security
requirements to the software
component of the product and
track their
completion/adherence?

 Secure Software
Development
Lifecycle Process
document

Security
Requirements
Document

Are unmodified third-party
libraries retrieved from a
common location such as a
secured persistent storage or
shared repository location out
of band of the development
process and not individually
built by your team?

 Secure Software
Development
Lifecycle Process
document

Do you monitor new
vulnerabilities applicable to
your software e.g. using
registered vulnerability
notification services?

 �����ä�s�ä�s Secure Software
Development
Lifecycle Process
document

Do you have and adhere to
responsible disclosure
requirements for all externally
identified vulnerabilities?

 Secure Software
Development
Lifecycle Process
document

Are all your builds
continuously built and tested?

 Secure Software
Development
Lifecycle Process
document

2.3.3 Configure the
Compilation and Build
Process

Does a check-in immediately
trigger a build?

 Secure Software
Development
Lifecycle Process
document

2.3.3 Configure the
Compilation and Build
Process

Securing the Software Supply Chain: Recommended Practices for Suppliers 32

Does a completed build
automatically go through some
acceptance testing?

 Secure Software
Development
Lifecycle Process
document

If the testing passes, is the
build automatically deployed
so others can consume it?

 �����ä�u�ä�s Secure Software
Development
Lifecycle Process
document

���‡�”�‹�ˆy ���Š�‹�”�†�æ���ƒ�”�–�› ���‘�•�’�‘�•�‡�•�–�•

Do you track all third-party
components you use directly
and all internal components in
a secure and persistent
repository?

 �����ä�s�ä�s

�����ä�v�ä1

Secure Software
Development
Lifecycle Process
document

OSRB Approved List

Product/Component
Scan Results

Do you have the requirement
for an Open-Source Review
Board to approve third-party
libraries included in a product
and audit approved third-
party libraries for version
adherence and vulnerabilities?

 �����ä�v�ä�s

�����ä�v�ä�v

Secure Software
Development
Lifecycle Process
document

OSRB Approved List

Do you remove or mitigate
critical known vulnerabilities
or end of life issues of third-
party components before each
release?

 �����ä�v�ä�w Secure Software
Development
Lifecycle Process
document

OSRB Approved List

2.2.2 Provide a
Mechanism for
Verifying Software
Release Integrity

2.3.2 Verify Third-Party
Software Complies with
Security Requirements

When considering the
selection of a third-party
component, do use a known
and trusted supplier that has a
proven record for secure
coding practices and quality
delivery of their components?

 �����ä�s�ä�u Secure Software
Development
Lifecycle Process
document

OSRB Approved List

Within a developer
environment, do you monitor
and approve of all IDEs and
third-party
development/debugging
extension to ensure their
adoption does not weaken the

 Secure Software
Development
Lifecycle Process
document

Securing the Software Supply Chain: Recommended Practices for Suppliers 33

security posture of the local
development environment?

Do you have a trusted
repository to support ongoing
software composition analysis
and security testing for all
external and downloaded
modules?

 Secure Software
Development
Lifecycle Process
document

���ƒ�”�†�‡�• �–�Š�‡ ���—�‹�Žd ���•�˜�‹�”�‘�•�•�‡�•�–

Have you completed attack
surface investigation and
threat modeling for your build
environment?

 Threat/Risks Model
Results Documents

Do you ensure that only in
very rare cases, the build
process accesses the open
Internet and these cases are
documented and approved
within the security plan?

 �����ä�w�ä�s Secure Software
Development
Lifecycle Process
document

Do you limit and secure access
to your development
environment to essential
administrators?

 Secure Software
Development
Lifecycle Process
document

Do you monitor the build chain
for unauthorized access and
modifications?

 Secure Software
Development
Lifecycle Process
document

Do you document approval
and audit logs of build chain
modifications?

 Secure Software
Development
Lifecycle Process
document

Do you enforce build-chain
configuration defensive
techniques required to narrow
the attack vectors of the
components and products
being developed?

 Secure Software
Development
Lifecycle Process
document

Build Logs

Do you ensure the integrity of
the individual development
environment, caring to harden
the development systems
within the build pipeline?

 Secure Software
Development
Lifecycle Process
document

Securing the Software Supply Chain: Recommended Practices for Suppliers 34

Does your build process
encrypt data in transit?

 Secure Software
Development
Lifecycle Process
document

2.2.1 Protect all Forms
of Code from
Unauthorized Access

2.3.6 Configure the
Software to have Secure
Settings by Default

Does each critical server
within the build chain owned
by the team have a clearly
defined owner responsible for
patch maintenance?

 �����ä�w�ä�s Secure Software
Development
Lifecycle Process
document

2.2.1 Protect all Forms
of Code from
Unauthorized Access

Do you have a requirement
that server patch levels are
checked periodically?

 Secure Software
Development
Lifecycle Process
document

Is unnecessary outbound
internet connectivity blocked?

 �����ä�w�ä�s Secure Software
Development
Lifecycle Process
document

Is unnecessary inbound
internet connectivity blocked?

 �����ä�w�ä�s Secure Software
Development
Lifecycle Process
document

Is the integrity of the builds
verified to ensure no malicious
changes have occurred during
the build and packaging
process, for example, are two
or more builds performed in
different protected
environments and the results
compared to ensure the
integrity of the build process?

 Secure Software
Development
Lifecycle Process
document

Do you use the toolchain to
automatically gather
information that informs
security decision-making?

 ���r�ä�v�ä�t Secure Software
Development
Lifecycle Process
document

2.3.3 Configure the
Compilation and Build
Process

Does the tool chain
automatically scan for
vulnerabilities and stop the
build process and report
errors when detected, if so
configured?

 �����ä�s�ä�s

�����ä�y�ä�t

Secure Software
Development
Lifecycle Process
document

2.4.1 Identify, Analyze,
and Remediate
Vulnerabilities on a
Continuous Basis

Do you store access
credentials (e.g. hashes for

Securing the Software Supply Chain: Recommended Practices for Suppliers 35

passwords) and secrets in a
secure (e.g. encrypted)
location such as a secure vault?

���‡�…�—�”e ���‘�†e ���‡�Ž�‹�˜�‡�”�›

Do you perform binary
composition analysis of the
final package?

 Secure Software
Development
Lifecycle Process
document

Do you have a Software Bill of
Materials (SBOM) that satisfies
the contracts?

 �����ä�u�ä�t

�����ä�v�ä�s

Do you digitally sign all
required binaries you ship?

 �����ä�s�ä�s

�����ä�t�ä�s

Secure Software
Development
Lifecycle Process
document

Do you ensure that globally-
trusted certificates are not
directly accessible and use a
dedicated, protected signing
server when signing is
required?

 Secure Software
Development
Lifecycle Process
document

2.2.2 Provide a
Mechanism for
Verifying Software
Release Integrity

Are you using organization
approved Configuration
Management tools to sign your
shipping binaries?

 Secure Software
Development
Lifecycle Process
document

2.2.2 Provide a
Mechanism for
Verifying Software
Release Integrity

Do you comply with the use of
cryptography recommended
by organization’s security
policy?

 �����ä�s�ä�s Secure Software
Development
Lifecycle Process
document

Securing the Software Supply Chain: Recommended Practices for Suppliers 36

�u�ä�w ���’�’�‡�•�†�‹�š ���ã ���•�ˆ�‘�”�•�ƒ�–�‹ve ���‡�ˆ�‡�”�‡�•�…�‡�•

���„�„�”�‡�˜�‹�ƒ�–�‹�‘�• ���‘�…�—�•�‡�•�– ���ƒ�•�‡

������ Communications of the ACM 17, “The Protection of Information in Computer
Systems”. Available at
(http://web.mit.edu/Saltzer/www/publications/protec tion/index.html)

������ BSA (2019) Framework for Secure Software. Available at
(https://www.bsa.org/reports/bsa-framework-for-secu re-software)

�����������s�r Migues S, Steven J, Ware M (2019) Building Security in Maturity Model (BSIMM)
Version 10. Available at (https://www.bsimm.com/download/)

�������� Cybersecurity & Infrastructure Security Agency. Available at
(https://www.cisa.gov/defining-insider-threats)

�����������4�������� Cisco. 2021. Cisco Secure Development Lifecycle. Available at
(https://www.cisco.com/c/dam/en_us/about/doing_busi ness/trust-
center/docs/cisco-secure-development-lifecycle.pdf)

�����s�v�r�t�z EOP. 2021. “Improving the Nation’s Cybersecurity”, Executive Order 14028, 86
FR 26633, Document number 2021- 10460. Available at
(https://www.whitehouse.gov/briefing-room/president ial-
actions/2021/05/12/executive-order-on-improving-the -nations-
cybersecurity/)

�	�������s�v�r National Institute of Standards and Technology. 2019. “Security Requirements
for Cryptographic Modules.” Available at
(https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf).

�������������� Hong Fong EK, Wheeler D, Henninger A (2016) State-of-the-Art Resources
(SOAR) for Software Vulnerability Detection, Test, and Evaluation 2016.
(Institute for Defense Analyses [IDA], Alexandria, VA), IDA Paper P-8005.
Available at (https://www.ida.org/research-and-
publications/publications/all/s/st/stateoftheartres ources-soar-for-software-
vulnerability-detection-test-and-evaluation-2016)

���������� Intel. Software Supply Chain Threats; A White Paper

�������t�y�r�u�v International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC), Information technology – Security techniques –
Application security – Part 1: Overview and concepts, ISO/IEC 27034-1:2011,
2011. Available at (https://www.iso.org/standard/44 378.html)

�����������4���������� MITRE. 2021. Common Attack Pattern Enumeration and Classification. Available
at (https://capec.mitre.org/data/definitions/437.ht ml)

�����������4������ MITRE. 2021. “Common Vulnerability and Exposure, CVE.” 2021. Available at
(https://cve.mitre.org/index.html).

���������� Microsoft (2019) Security Development Lifecycle. Available at
https://www.microsoft.com/en-us/sdl

���������������z�y�u�{ National Aeronautics and Space Administration. 2021. “SOFTWARE ASSURANCE
AND SOFTWARE SAFETY STANDARD, NASA-STD-8739.8A.” Available at

Securing the Software Supply Chain: Recommended Practices for Suppliers 37

(https://standards.nasa.gov/sites/default/files/sta ndards/NASA/PUBLISHED/A
1/nasa-std-8739.8a.pdf).

���������� National Initiative for Cybersecurity Careers and Studies, National Initiative for
Cybersecurity Education. 2021 Workforce Framework for Cybersecurity (NICE
Framework). Available at (https://niccs.cisa.gov/workforce-
development/cyber-security-workforce-framework)

�������������	 National Institute of Standards and Technology. 2018. “Framework for
Improving Critical Infrastructure Cybersecurity, Version 1.1.” Available at
(https://doi.org/10.6028/NIST.CSWP.04162018)

���������������� National Institute of Standards and Technology. 2018. “Guidelines on Minimum
Standards for Developer Verification of Software”. available at
(https://www.nist.gov/system/files/documents/2021/0 7/13/Developer%20Ve
rification%20of%20Software.pdf)

���������������� National Telecommunications and Information Administration. 2021. “The
Minimum Elements for a Software Bill of Materials (SBOM).” Available at
(https://www.ntia.doc.gov/report/2021/minimum-eleme nts-software-bill-
materials-sbom)

������ National Vulnerability Database. Available at (https://www.nist.gov/programs-
projects/national-vulnerability-database-nvd)

�����������4�������� Open Web Application Security Project (2019) OWASP Application Security
Verification Standard 4.0. Available at https://github.com/OWASP/ASVS

�����������4�������� Open Web Application Security Project (2017) Software Assurance Maturity
Model Version 1.5. Available at
(https://www.owasp.org/index.php/OWASP_SAMM_Project)

�����������4�������� OWASP. 2021. “OWASP Software Component Verification Standard.” Retrieved
Sep. 25, 2021 (https://owasp.org/www-project-software-component-
verification-standard/).

�����������4�������� Open Web Application Security Project (2014) OWASP Testing Guide 4.0.
Available at https://www.owasp.org/images/1/19/OTGv 4.pdf

�������4������������ Payment Card Industry (PCI) Security Standards Council (2019) Secure Software
Lifecycle (Secure SLC) Requirements and Assessment Procedures Version 1.0.
Available at
(https://www.pcisecuritystandards.org/document_libr ary?category=sware_sec
#results)

�����4���
������ Software Assurance Forum for Excellence in Code (2012) Practical Security
Stories and Security Tasks for Agile Development Environments. Available at
(http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf)

�����4�	�������� Software Assurance Forum for Excellence in Code (2018) Fundamental Practices
for Secure Software Development: Essential Elements of a Secure Development
Lifecycle Program, Third Edition. Available at (https://safecode.org/wpcontent/
uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Dev
elopment_March_2018.pdf)

Securing the Software Supply Chain: Recommended Practices for Suppliers 38

�����4������ Software Assurance Forum for Excellence in Code (2010) Software Integrity
Controls: An Assurance-Based Approach to Minimizing Risks in the Software
Supply Chain. Available at
(http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0
610.pdf)

�����4������ Software Assurance Forum for Excellence in Code (2017) Managing Security
Risks Inherent in the Use of Third-Party Components. Available at
(https://www.safecode.org/wpcontent/uploads/2017/05 /SAFECode_TPC_Whit
epaper.pdf)

�����4������ Software Assurance Forum for Excellence in Code (2017) Tactical Threat
Modeling. Available at
(https://www.safecode.org/wpcontent/uploads/2017/05 /SAFECode_TM_White
paper.pdf)

�������� The Linux Foundation. 2021. “Improving artifact integrity across the supply
chain – SLSA.” Available at (https://slsa.dev/)

�����z�r�r�w�r National Institute of Standards and Technology. 2021. “PRE-DRAFT Call for
Comments: Building a Cybersecurity and Privacy Awareness and Training
Program, SPS 800-50 Rev 1.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-5 0/rev-1/draft).” Retrieved
Sep. 25, 2021.

�����z�r�r�w�t National Institute of Standards and Technology. 2020. “Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS)
Implementations, SP 800-52 Rev. 2.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-5 2/rev-2/final).

�����z�r�r�w�u National Institute of Standards and Technology. 2020. “Security and Privacy
Controls for

�����z�r�r�w�y National Institute of Standards and Technology. 2020. “Recommendation for Key
Management: Part 1 – General, SP 800-57 Part 1 Rev. 5.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-5 7-part-1/rev-5/final)

�����z�r�r�s�x�r National Institute of Standards and Technology. 2018. “Systems Security
Engineering.” Available at (https://doi.org/10.6028/NIST.SP.800-160v1)

�����z�r�r�s�x�s "National Institute of Standards and Technology. 2021. ""Supply Chain Risk
Management Practices for Federal Information Systems and Organizations.""
Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublicati ons/NIST.SP.800-161.pdf)"

�����z�r�r�s�y�t ”Enhanced Security Requirements for Protecting Controlled Unclassified
Information: A Supplement to NIST Special Publication 800-171. Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublicatio ns/NIST.SP.800-172.pdf)

�����z�r�r�s�y�w�� National Institute of Standards and Technology. 2020. “Guideline for Using
Cryptographic Standards in the Federal Government: Cryptographic
Mechanisms. SP 800-175B Rev. 1.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-1 75b/rev-1/final).

Securing the Software Supply Chain: Recommended Practices for Suppliers 39

�����z�r�r�s�z�s National Institute of Standards and Technology, National Initiative for
Cybersecurity Education. 2020. “Workforce Framework for Cybersecurity (NICE
Framework).” Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublicati ons/NIST.SP.800-181r1.pdf)

�����z�r�r�s�{�u National Institute of Standards and Technology. 2018. “Platform Firmware
Resiliency Guidelines, SP-800-193.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-1 93/final).

�����z�r�r�t�r�y National Institute of Standards and Technology. 2020. “Zero-Trust Architecture,
SP-800-207.”
https://nvlpubs.nist.gov/nistpubs/SpecialPublicatio ns/NIST.SP.800-207.pdf

�������	 National Institute of Standards and Technology. 2020. “Mitigating the Risk of
Software Vulnerabilities by Adopting a Secure Software Development
Framework (SSDF).” Available at
(https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04232020.pdf)

�������������u IEEE Computer Society. 2014. Guide to the Software Engineering Body of
Knowledge. Available at (https://www.computer.org/education/bodies-of-
knowledge/software-engineering/v3)

���������������� Synopsys. 2021. “Synopsys Information Security Requirements for Vendors.”
Available at https://www.synopsys.com/company/legal /info-security.html

���������� IBM, ZDNET. 2021. “Managing a Software as a Vendor Relationship: Best
Practices”. Available at (https://www.zdnet.com/art icle/managing-a-software-
as-a-service-vendor-relationship-best-practices/)

Securing the Software Supply Chain: Recommended Practices for Suppliers 40

�u�ä�x ���’�’�‡�•�†�‹�š �	�ã ���…�”�‘�•�›�•s

���…�”�‘�•�›�• ���‡�ƒ�•�‹�•�‰

�������� Address Space Layout Randomization

���������� Continuous Integration/Continuous Delivery

���������� Committee on National Security Systems Instruction

�������� Common Vulnerability Scoring System

������ Common Vulnerabilities and Exposures

������ Common Weakness Enumeration

�������� Dynamic Application Security Testing

������ Data Loss Prevention

���� Executive Order

������ End of Life

�	�‡�†�������� Federal Risk and Authorization Management Program

�	������ Federal Information Process Standards

���������� Health Insurance Portability and Accountability Act

������ Hardware Security Module

�������������� Hypertext Transfer Protocol (Secure)

���	�� Multi Factor Authentication

������ Non-Disclosure Agreement

�������� National Institute of Standards and Technology

�������� National Telecommunications and Information Administration

�������� Open-Source Review Board

���������� Open Web Application Security Project

���� Prepare Organization

���� Protect Software

���������� Product Security Incident Response Team

���� Produce Well-Secured Software

�� A Quality Assurance

�������� Responsible, Accountable, Consulted, and Informed

�������� Role-Based Access Control

���� Risk Management

���� Respond to Vulnerabilities

���ƒ�ƒ�� Software-as-a-Service

�������� Static Application Security Testing

�������� Software Bill of Material

������ Software Composition Analysis

Securing the Software Supply Chain: Recommended Practices for Suppliers 41

������ Supply Chain Management

������ Source Code Management

�������� Supply Chain Risk Management

�������� Software Component Verification Standard

�������� Software Development Lifecycle

�������� Supply-chain Levels for Software Artifacts

�������	 Secure Software Development Framework

������ Transport Layer Security

������ Version Control System

���� Virtual Machine

������ Virtual Private Network

